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ABSTRACT
In this paper we present the design and implementation of a dis-
tributed, whole-program static analysis framework that is designed
to scale with the size of the input. Our approach is based on the
actor programming model and is deployed in the cloud. Our re-
liance on a cloud cluster provides a degree of elasticity for CPU,
memory, and storage resources. To demonstrate the potential of
our technique, we show how a typical call graph analysis can be
implemented in a distributed setting. The vision that motivates this
work is that every large-scale software repository such as GitHub,
BitBucket or Visual Studio Online will be able to perform static
analysis on a large scale.

We experimentally validate our implementation of the dis-
tributed call graph analysis using a combination of both synthetic
and real benchmarks. To show scalability, we demonstrate how
the analysis presented in this paper is able to handle inputs that
are almost 10 million lines of code (LOC) in size, without running
out of memory. Our results show that the analysis scales well in
terms of memory pressure independently of the input size, as we
add more virtual machines (VMs). As the number of worker VMs
increases, we observe that the analysis time generally improves
as well. Lastly, we demonstrate that querying the results can be
performed with a median latency of 15 ms.

CCS CONCEPTS
• Theory of computation → Distributed algorithms; • Soft-
ware and its engineering → Automated static analysis; In-
tegrated and visual development environments; • Computer
systems organization→ Cloud computing;
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Development environments and tools, Parallel, distributed, and
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1 INTRODUCTION
In the last decade, we have seen a number of attempts to build
increasingly more scalable whole program analysis tools. Advances
in scalability have often come from improvements in underlying
solvers such as SAT and Datalog solvers as well as sometimes
improvements to the data representation in the analysis itself; we
have seen much of this progress in the space of pointer analysis [3,
15, 16, 22, 25, 26, 42].
Limits of scalability: A typical whole-program analysis is de-
signed to run on a single machine, primarily storing its data struc-
tures in memory. Despite the intentions of the analysis designer,
this approach ultimately leads to scalability issues as the input pro-
gram size increases, with even the most lightweight of analyses.
Indeed, if the analysis is stateful, i.e. it needs to store data about
the program as it progresses, typically, in memory, eventually this
approach ceases to scale to very large inputs. Memory is frequently
a bottleneck even if the processing time is tolerable, despite var-
ious memory compression techinques such as BDDs. We believe
that the need to develop scalable program analyses is now greater
than ever. This is because we see a shift toward developing large
projects in centralized source repositories such as GitHub, which
opens up opportunities for creating powerful and scalable analysis
backends that go beyond what any developer’s machine may be
able to accomplish.
Distributed analysis: In this paper we explore an alternative ap-
proach to build distributed static analysis tools, designed to scale
with the input size, with the goal of achieving full elasticity. In
other words, no matter how big the input program is, given enough
computing resources, i.e. machines to execute on, the analysis will
complete in a reasonable time. Our analysis architecture assumes
that the static analysis runs in the cloud, which gives us elasticity
for CPU and memory resources, as well as storage. More specif-
ically, in the context of large-scale code repositories, even code
understanding and code browsing tasks are made challenging by
the size of the code base. We have seen the emergence of scalable
online code browsers such as Mozilla’s LXR [28]. These tools of-
ten operate in batch mode, and thus have a hard time keeping up
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with a rapidly changing code repository in real time, especially for
repositories with many simultaneous contributors. We aim to show
how a nimbler system can be designed, where analysis results are
largely stored in memory, spread across multiple machines. This
design results in more responsive queries to obtain analysis results.

1.1 Motivation: Static Analysis Backend
Imagine a large project hosted within a centralized source reposi-
tory such as GitHub, BitBucket or Visual Studio Online1. We see
an emerging opportunity to perform server-side analysis in such
a setting. Indeed, the backends of many such repositories consists
of a large collection of machines, not all of which are fully utilized
at any given time. During the downtime, some of the available
cycles could be used to do static analysis of the code base. This can
help developers with both program understanding tasks, such as
code browsing as well as other static analysis applications, such as
finding bugs.
The ever-changing code base: As is typical for large projects,
multiple developers constantly update the code base, so it is imper-
ative that the server-side analysis be both responsive to read-only
user queries and propagate code updates fast. At the same time,
within a large code base, many parts of the code, often entire di-
rectories remain unchanged for days or months at a time. Often,
there is no reason to access these for analysis purposes. Therefore,
to ensure that we do not run out of memory, it is important to
have a system that is able to bring analysis nodes into memory on
demand and persist them to disk (put them to sleep) when they are
no longer needed.

1.2 Call Graph Computation
In this paper we advocate the use of the actor model as a building
block of typical worklist-based analysis approaches. More specifi-
cally, we use this approach to implement a typical call graph con-
struction algorithm. While the algorithm itself is quite well-known
and is not a contribution of this paper, the way it is implemented
in a distributed setting is. Also note that call graph information is
used for interactive tasks such as autocomplete (or Intellisense), as
shown in Figure 6. For tasks like this, both accuracy and respon-
siveness are important. Call graph construction is a fundamental
step of most whole-program analysis techniques. However, most of
the time, call graph analysis computation is a batch process: start-
ing with one or more entry points such as Main, the call graph is
iteratively updated until no more methods are discovered.
Interactive analysis: Our setting in this paper is a little different.
Our goal is to answer interactive user queries quickly. Our queries
are the kind that are most frequently posed in the context of code
browsing and debugging, and are already supported on a syntactic
level by many IDEs. Specifically, our analysis in this paper has been
developed to provide semantic, analysis-backed answers for the
following IDE-based tasks: (1)Go to definition: Given a symbol in
the program, find its possible definitions2; (2)Who callsme:Given
1Visual Studio Online: https://www.visualstudio.com/team-services/.
2Note that this process is challenging due to the presence of polymorphism, common
in object-oriented languages. Given a call site, it is not always possible to determine
which is the actual method implementation being invoked. This problem known as
call site devirtualization is well-studied in the literature. Therefore, a static analysis
can only approximate the target method definitions for a virtual method invocation.

a method definition, find all of its callers; (3)Auto-complete:Auto-
completion, invoked when the developer presses a dot is one of the
most common and well-studied tasks within an IDE [7, 19, 23, 29–
31]. If the variable or expressions on the left-hand side of the dot is of
a generic interface type, completion suggestions are not particularly
useful or too general. It is therefore helpful to know which concrete
type flow to a given abstract location.

We have architected our analysis backend to respond to REST
calls [1] that correspond to the queries above. These queries consti-
tute an important part of what is collectively known as language
services and can be issued by both online IDEs, sophisticated code
editors such as SublimeText, and full-fledged IDEs such as Eclipse
and Visual Studio. Figure 6 shows examples of an IDE in action.
Soundness: Given the nature of such tasks that focus on program
understanding, the goal is not to always be absolutely precise, but
to be both useful to the end user and responsive. Our analysis judi-
ciously cuts corners in the spirit of soundiness [21]. As the analysis
results are used in an advisory role in the context of program un-
derstanding in an interactive setting, complete soundness is not the
goal. For instance, we do not attempt to model reflective constructs.
While we focus on C# as the input language, our work should apply
equally well to analyzing large projects in Java and other similar
object-oriented languages. It is not, however, our goal to faithfully
handle all the tricky language features such as reflection, runtime
code generation, and pinvoke-based native calls.

1.3 Contributions
This paper makes the following contributions:
• We propose a distributed static analysis approach, based on the
monotone framework, and show how to apply it to call graph
construction for answering program understanding and code
browsing queries.

• We describe how the analysis is implemented on top of the
Orleans distributed programming platform and is deployed on
legacy hardware in the cloud using Microsoft Azure.

• We experimentally demonstrate the scalability of our distributed
call graph implementation using a range of synthetic and real
benchmarks. The results show that our analysis scales well in
terms of memory pressure independently of the input size, as
we add more machines. Despite using stock hardware and incur-
ring a non-trivial communication overhead, we scale to inputs
containing 10 million LOC: for inputs of 1M LOC, the analysis re-
quires at least 4 machines; for 10M LOC, 16 machines. While the
communication overhead can become a bottleneck, we show that
as the number of machines increases (up to 64), the analysis time
generally drops. Depending on the setting, partial results can be
queried before the analysis has finished. Lastly, we demonstrate
that querying the results can be performed with an acceptable
median latency of 15 ms.

2 OVERVIEW
Our goal is to have the analysis backend respond to queries quickly,
independently of the input size. Of course, we also need to make
sure that the backend does not run out of memory or timeout in
some unpredictable way. Our requirements force us to rethink some
of the typical assumptions of whole-program analysis.

https://www.visualstudio.com/team-services/
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1: while |MQ | > 0 do
2: ⟨a,m ⟩ := MQ .choose()
3: v := UNPACK(m) ⊔ VALUE[a]
4: if v ⊑ VALUE[a] then
5: continue
6: end if
7: v ′ := TF[a](v)
8:

9: if v ⊑ v ′ then
10: U := DELTA(v, v ′)
11: for each u inU do
12: MQ := MQ ∪ PACK(a, u)
13: end for
14: VALUE[a] := v ′

15: end if
16: end while

Figure 1: Distributed worklist algorithm.

2.1 Analysis Design Principles
We use a distributed actor model [2] as the basis of our distributed
static analysis engine. For a program written in an object-oriented
language such as Java or C#, a natural fit is to have an actor per
method within the program. We could choose to have an actor per
class in a program, or any other well-defined program entity. These
actors are responsible for receiving messages from other actors,
processing them using local state (a representation of the method
body, for instance), and sending information to other methods that
depend on it. For example, for a call graph construction analysis,
actors representing individualmethodsmay sendmessages to actors
for their callers and callees. Our analysis design adhere to the
following distilled principles.
Minimal in-memory state per actor:Wewant to “pack” asmany
actors per machine as possible without creating undue memory
pressure, leading to swapping, etc.
Design for lightweight serialization: We have designed our
analysis so that the updates sent from one actor to another are
generally small and easily serialized. There is minimal sharing
among actors, as actor holds on to its local state and occasionally
sends small updates to others. The same principle applies to persis-
tent per-actor state as well. We only serialize the bare minimum
to disk, before the actor is put to sleep. This can happen when the
actor runtime decides to page an actor out due to memory pressure
or lack of recent use.
State can be recomputed on demand: In a distributed setting,
we have to face the reality that processes may die due to hardware
and/or software faults. It is therefore imperative to be able to recover
in case of state loss. While it is possible to commit local state to
persistent store, we eschew the overhead of such an approach and
instead choose to recompute per-node state on demand.
Locality optimizations to minimize communication: We at-
tempt to place related actors together on the same machine. In the
case of a call graph analysis, this often means that entire strongly
connected components co-exist on the same physical box, which
minimizes the number of messages that we actually need to dispatch
across the network.

2.2 Distributed Worklist Algorithm
We now present a high-level view of a distributed analysis problem
as a pair ⟨A,L⟩ where:
• A is a set of actors distributed in a network.
• ⟨L,⊑,⊔⟩ is a complete semi-lattice of finite height3.
Each actor a ∈ A has the following associated functions:
• VALUE[a] = v ∈ L is the local state of actor a;

3The finite height requirement can be avoided with the use of a widening operator.

• TF[a] : L 7→ L is the transfer function for the local computation
performed within actor a. We assume all TF are monotone;

The following helper functions are for communicating state changes
among actors:
• DELTA(v,v ′) computes a setU of (global) updates required when
switching from local state v to v ′ ∈ L;

• PACK(a,u) is a function that given an update at actor a ∈ A
produces one or several messages to communicate to other actors.

• UNPACK(m) is a function that unpacks a message and returns a
value v ∈ L.

Figure 1 shows the pseudocode for a distributed worklist algorithm.
The algorithm makes use of a global message queue, denoted as
MQ4. The queue is initialized with a set of starting messages that
will depend on the actual analysis instance.

2.3 Termination and Non-Determinism
We would like to show that the presented distributed worklist
algorithm terminates.

LetH denote the (finite5) height of semi-lattice L and let N = |A|.
Consider iterations through the loop on line 1. Let’s consider two
sets of sequences of iterations, I1 are iterations that lead to a value
increase on line 7 and I2 are those that do not.

We can have at most H × N iterations in I1 given the finite size
of the lattice. For iterations in I2, the size ofMQ decreases because
at least one message is consumed but it does not generate other
messages. We consider two possibilities:
• Starting from some iteration i , we only have iterations in I2. This,
however, means that on every iteration the size ofMQ decreases,
until it eventually becomes empty.

• The other possibility is that we will have an infinite number of
iterations in I1 . This is clearly impossible because the size of I1
is bounded by H × N .

It is important to emphasize the difference between this distributed
algorithm and a single-node worklist approach. If a message is in
flight, we do not wish the program analysis to terminate. However,
detecting the emptiness ofMQ is not trivial, so in practice we must
have an effective means for detecting termination. We make use of
an orchestrator mechanism for termination detection, as described
in Section 4.2.

While the algorithm in Figure 1 reaches a fixpoint independently
of the arrival order of messages, it is natural to ask whether that
is the only fixpoint that can be reached. Given that TF[a] is mono-
tone and L is of a finite height the uniqueness of least fixpoint is
guaranteed [9, 18].

3 CALL GRAPH ANALYSIS
In this section we present an instantiation of the general framework
described in the previous section for computing call graphs. Our
analysis is a distributed interprocedural inclusion-based static anal-
ysis inspired by the Variable Type Analysis (VTA) presented in [36].
This flow-insensitive analysis computes the set of potential types
4Note that MQ is a mathematical abstraction: we do not actually use a global mes-
sage queue in our implementation. Conceptually, we can think of a (local) worklist
maintained on a per-actor basis. Termination is achieved when all the worklists are
empty.
5Note that our approach can also terminate for an infinite hight lattice with the use of
a widening operator.
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for each object reference (variable, field, etc.) by solving a system
of inclusion constraints. Because it propagates type constraints
from object allocation sites to their uses, this kind of analysis is
sometimes referred to as concrete type analysis.

3.1 Program Representation
Propagation graphs: At the method level, the inclusion-based
analysis is implemented using a data structure we call a propaga-
tion graph (PG) [36]. A PG is a directed graph used to “push” type
information to follow data flow in the program, as described by
analysis rules. Our analysis naturally lands itself to incrementality,
although we do not evaluate this experimentally in this paper. A
typical change in the program would require often minimal recom-
putation within the modified code fragment as well as propagation
of that information to its “neighbors”. Propagation graphs support
incremental updates since the propagation of information is trig-
gered when a new type reaches a node.
Terminology: More formally, let PG = ⟨R,E⟩ where R denotes a
set of nodes representing abstract locations in the method (such as
variables and fields) and E refers to a set of edges between them.
An edge e = (v1,v2) ∈ E connects nodes in the PG to model the
potential flow of type information fromv1 tov2. Essentially, an edge
represents a rule stating that Types(v2) ⊇ Types(v1) (e.g, v2 = v1).
To model interprocedural interaction, the PG also includes nodes
representing method invocations (invloc ) and return values (rv).
Finally, I ⊆ R denotes the set of invocations. Let T be the set of all
possible types, dType contains declared types (compile-time types)
for abstract locations and Types denotes concrete types inferred
by our analysis.

3.2 Analysis Phases
In the actor model, the choice of granularity is key for performance.
We decided to use one actor per method, although other design deci-
sions such as one actor per class are also possible. Eachmethod-level
actor contains a PG that captures type information that propagates
through the method. The analysis starts by analyzing an initial set
of root methodsM0. We describe both intra- and interprocedural
processing below.

3.2.1 Intraprocedural Analysis.
This phase is the responsible of computing the local state of an

actor representing a method.
Instantiating the problem: The lattice L for our analysis consists
of a mapping from abstract locations to sets of possible types and
is defined as

L = ⟨Types : R 7→ 2T ,⊑type ,⊔type ⟩

with ⊑type defined as

l1 ⊑type l2 iff l1.Types(r ) ⊆ l2.Types(r ),∀r ∈ R

and ⊔type defined as l1 ⊔type l2 = l3 where

l3.Types(r ) = l1.Types(r ) ∪ l2.Types(r ),∀r ∈ R.

Analysis rules that compute TF[a] are summarized in Figure 2 and
cover the typical statement types such as loads, stores, allocations,
etc. Object dereferences (i.e., v . f ) are represented by using the

v1 = v2 =⇒ Types(v1) ⊇ Types(v2)
v1 = v2 .f =⇒ Types(v1) ⊇ Types(dType(v2).f )
v1 .f = v2 =⇒ Types(dType(v1).f ) ⊇ Types(v2)

v = new C() =⇒ C ∈ Types(v)
return v =⇒ Types(rv) ⊇ Types(v)

loc : v = v0 .m(v1 . . .vn ) =⇒ Types(invloc ) ⊇
⋃

j=0. .n
Types(vj )

Figure 2: VTA analysis rules.

name of the class defining the field. That is, the analysis is field-
sensitive but not object-sensitive. In the case of invocations there
is an inclusion relation to model the flow of all the arguments to
the invocation abstract location invloc ∈ I ⊆ R. Note that the left-
hand side v of the invocation is not updated by the rule since it
depends on the result of the invoked method. This will be handled
by interprocedural analysis.

Notice thatTF [a] is monotonic because the propagation of types
never removes a type and L satisfies the finite-height condition
because it is a finite lattice.

3.2.2 Interprocedural Analysis. Once the intraprocedural phase
finishes, relevant updates must be communicated to the correspond-
ing methods (callees and callers). As mentioned, the analysis con-
siders invocations using the set I ⊆ R. To handle callers’ updates,
we need to extend the lattice to include the caller’s information
for the current method. This has the form ⟨m, lhs⟩, wherem ∈ A
denotes the caller’s name and lhs ∈ R represents the left-hand side
of the invocation made by the caller. The extended lattice is shown
below.

L = ⟨Types : R 7→ 2T × Callers : 2A×R, ⊑, ⊔⟩
l1 ⊑ l2 iff l1 ⊑type l2 ∧

l1 .Callers ⊆ l2 .Callers
l1 ⊔ l2 = (ts, cs) where

ts = l1 ⊔type l2 ∧
cs = l1 .Callers ∪ l2 .Callers

A message m has the form ⟨kind,d,data⟩, where kind ∈
{callMsg, retMsg} is the kind of message, d ∈ A is the destina-
tion actor and data is a tuple.
Instantiating DELTA: In Figure 3a we show the definition of the
DELTA operation described in Section 2. It computes the set of
invocations that were affected by the propagation. An invocation
is affected if the set of types flowing to any of its parameters grew.
Additionally, we also must consider changes in types that the return
value may correspond to, since they need to be communicated to
the callers.
Instantiating PACK : Figure 3b shows a definition of PACK . This
function is in charge of converting local updates to messages that
can be serialized and sent to other actors. For each invocation,
the analysis uses the computed type information of the receiver
argument to resolve potential callees.

Then, it builds a caller message including the potential types for
each argument. Those types will be added to the set of types of the
parameters on the caller actor. In case of an update in return value
it builds a message to inform the caller about changes to the return
value’s types. This message includes the (original) caller’s left-hand
side, so that the caller can update its types.
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let diff(v, v ′, r ) := v ′ .Types(r ) − v .Types(r )
let Inv(v, v ′) := {inv | inv ∈ I ∧ diff(v, v ′, inv) , ∅}

let Rv(v, v ′) :=
{

{rv } if diff(v, v ′, rv) , ∅
∅ otherwise

DELTA(v, v ′) def
= Inv(v, v ′) ∪ Rv(v, v ′)

(a) Definition of DELTA(v, v ′)

let callees(inv) := {C .m |C ∈ l .Types(arдs(inv)0)}
let callMsg(a, inv) := ⟨a, lhs(inv), l .Types(arдs(inv))⟩
let callMsgs(a, inv) := { ⟨callMsg, d, callMsg(a, inv)⟩

| d ∈ callees(inv)}
let returnMsg(a, c) := ⟨a, lhs(c), l .Types(rv)⟩

let retMsgs(a) := { ⟨retMsg,method (c), returnMsg(a, c)⟩
| c ∈ l .Callers}

PACK(a, u) def
=

{
callMsgs(a, u) if u ∈ I
retMsgs(a) if u = rv

(b) Definition of PACK(a, u). l .Types(arдs) is the lifting of l .Types to
the list of arguments, it returns a lists of set of types. Given inv =
⟨v = v0 .m(v1 . . .vn )⟩, arдs(inv) = [v0, v1, . . . , vn ], lhs(inv) = v .
For a caller c = (m, lhs) ∈ l .Callers, method (c) = m, the caller’s
name and lhs(c) = lhs , the left-hand side of the original invocation
made by the caller.

let l1 .Types(r ) =

{
arдTypes(m)i if r = pi
∅ otherwise

let l1 .Callers = { (sender (m), lhs(m)) }

let l2 .Types(r ) =

{
r etTypes(m) if r = lhs(m)
∅ otherwise

UNPACK(m) def
=

{
l1 if kind (m) = callMsg
l2 if kind (m) = retMsg

(c) Definition of UNPACK(m). For a message m =

⟨callMsg, d, ⟨a, lhs, [ts0, ts1, . . . , tsn ]⟩⟩ arдTypes(m)i = tsi ,
the set of potential types for the ith argument pi . lhs(m) = lhs ,
sender (m) = a. For a return messagem′ = ⟨retMsg, d, ⟨a, lhs, ts ⟩⟩,
r etTypes(m′) = ts is the set of potential types of the method’s
return value.

Figure 3: Defining DELTA, UNPACK , and PACK .

Instantiating UNPACK : Function UNPACK in Figure 3c is respon-
sible for processing messages received by an actor. This function
converts a message into a value in the lattice of the local analysis
that will be then joined into the local state. A message can be either
a call message (i.e., an invocation made by a caller) or a return mes-
sage (i.e., to inform a change in the callee’s return value). For call
messages we produce an element that incorporates the types for
each call argument into the method parameters. We also update the
set of callers. For return messages we need to update the left-hand
side of the invocation with the potential types of the return value.

Example 1 This example illustrates the advantage of using con-
crete types as opposed to declared types to obtain more precision.
Consider the small program in Figure 4a. In Figure 4b we show the
propagation graphs for both methods. As the analysis starts, only
the left-hand sides of allocations (lines 2 and 11) contain types.

During propagation, type B flows from variable x into an invo-
cation of M as an argument. This triggers a message to the actor for
method B.M. The flow through parameter p and w makes the return

1 public static void Main() {
2 A x = new B(); // allocation
3 A y = x.M(x);
4 A z = y;
5 }
6 public class A {
7 public abstract A M(A p);
8 }
9 public class B : A {
10 public override A M(A p) {
11 A w = new B(); // allocation
12 return (p != null) ? p : w;
13 }
14 }

(a) Code example for interprocedural propagation.

A actual argument
of call M(x)

{}

A y
{}

A z
{}

A x
{B}

A p
{}

A returnValue
{}

A w
{B}

A actual argument
of call M(x)

{B}

A y
{B}

A z
{B}

A x
{B}

A p
{B}

A returnValue
{B}

A w
{B}

call message

return message

(b) PGs for methods Main and B.M before (left) and after (right) the
propagation for the code in Figure 4a.

Figure 4: Code and propagation graph for Example 1.

value of B.M to contain type B. This in turn triggers a return message
that adds B to the types of y. This propagates to z. Concrete type
analysis produces results that are more accurate for y, z, etc. than
what we can obtain from their declared types.
Type approximation: In the interprocedural stage, our analysis
sends information about concrete parameter types to its callees.
However, when it comes to complex, nested objects, this informa-
tion is potentially insufficient, as it only concerns one level of the
object hierarchy. Consider the following example:

void Main { void M(A p) {

A x = new B(); A z = p.f;

x.f = new B(); return z;

y = M(x) }

}

Function PACK will create a message that propagates the type of x
into M and UNPACK will discover the type of p to be B. However,
no information is given for the type of p.f, potentially leading to
unsoundness. Instead of sending information about nested fields,
which leads to increased message sizes, we opted to use the type of
p.f given by a distributed version of the Rapid Type Analysis [5]
that runs simultaneously on eachmethod-actor; when RTA provides
no useful information, we fall back on declared types. We did not
observe imprecision caused by this over-approximation.

3.3 Other uses of the analysis framework
The distributed algorithm in Figure 1 can be instantiated for other
program analyses that follow the same design principle. For in-
stance, consider an inclusion-based analysis like Andersen’s points-
to [4]. A possible instantiation may be as follows: (1) Each actor
represents a method; (2) The transfer function implements Ander-
sen’s inclusion rules locally and, in case there is a change in an
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argument of a method invocation, produces an update message to
be sent to the potential callees.

Similarly, by just replacing the inclusion rules with unification
rules in the transfer function, we can turn it into a unification based
points-to analysis like Steensgaard’s [35]. Context-sensitivity can be
achieved by representing different context ×method combinations
with different actors.

It is worth noticing that our analysis has similar characteristics
as standard dataflow analyses, but an ordering on how information
flows between the actors cannot be assumed. We envision future
work where our distributed back-end would be combined with a
natural front-end for this kind of analysis that uses Datalog, as
previously proposed for single-machine analysis [17]. However,
as we describe in Section 1.2, our evaluation in Section 5 focuses
on quickly answering interactive questions related to call graph
resolution in the context of a IDE.

4 IMPLEMENTATION
We implemented a prototype of our distributed approach6 to an-
alyze large-scale projects written in C#. This prototype relies on
Roslyn [27], a compiler framework for analyzing C# code and the
Orleans framework [6], an implementation of a distributed actor
model that can be deployed in the cloud. Although other deploy-
ment options such AWS are possible, for this paper we used Azure
as a platform for running our experiments.

4.1 Orleans and the Actor Model
Orleans [6] is a framework designed to simplify the development
of distributed applications. It is based on the abstraction of virtual
actors. In Orleans terminology, these actors are called grains. Or-
leans solves a number of the complex distributed systems problems,
such as deciding where — on which machine — to allocate a given
actor, sending messages across machines, etc., largely liberating
developers from dealing with those concerns. At the same time,
the Orleans runtime is designed to enable applications that have
high degrees of responsiveness and scalability. Grains are the basic
building blocks of Orleans applications and are the units of iso-
lation and distribution. Every grain has a unique global identity
that allows the underlying runtime to dispatch messages between
actors. An actor encapsulates both behavior and mutable local state.
State updates across grains can be initiated using messages.

The runtime decides which physical machine (silo in Orleans
terminology) a given grain should execute on, given concerns such
as memory pressure, amount of communication between individual
grains, etc. This mechanism is designed to optimize for communi-
cation locality because even within the same cluster the amount of
cross-machine messages are considerably smaller than the amount
of local messages, within the same machine.

We follow a specific strategy in organizing grains at runtime.
This strategy is driven by the input structure. The input consists of
an MSBuild solution, a .sln file that can be opened in Visual Studio.
Each solution consists of a set of project files, ∗.csproj, which may
depend on each other. Roslyn allows us to enumerate all project
files within a solution, source files within a project, classes within

6Source code and benchmarks available on GitHub at:
https://github.com/too4words/Call-Graph-Builder-DotNet.

a file, methods within a class, etc. Furthermore, Roslyn can use its
built-in C# compiler to compile sources on the fly. We define grains
for solutions, projects and methods. We did not find it necessary
to provide grains for classes and other higher-level code artifacts
such as namespaces.

A solution grain is a singleton responsible for maintaining the
list of projects and providing functionality to find methods within
projects; A project grain contains the source code of all files for
that project and provides functionality to compute the information
required bymethod grains (e.g., to build propagation graphs by pars-
ing the method code) as well as type resolution (e.g., method lockup,
subtyping queries, etc). Finally, a method grain is responsible for
computing the local type propagation and resolving caller/callees
queries; it stores type information for abstract locations within the
method.

The solution grain reads the ∗.sln file from cloud storage; in our
implementation we used Azure Files, but other forms of input that
support file-like APIs such as GitHub or Dropbox are also possible.
Project grains read ∗.csproj files and also proceed to compile the
sources contained in the project to get a Roslyn Compilation object.
This information is only contained in the project grain to minimize
duplication. To obtain information about the rest of the project,
method grains can consult the project grain. We use caching to
reduce the number of messages between method and project grains.

Example 2 To illustrate persistent state for a typical method grain,
consider the example in Figure 4a. The state of both methods is as
follows.
Method Main:
Callers = {}
Types = {(x,{B}), (y,{B}), (z,{B}), (3,{B})}

Method B.M:
Callers = {(A.Main, y)}
Types = {(p,{B}), (w,{B}), (returnValue,{B})}

This minimal state is easily serialized to disk if the grains are ever
deactivated by the Orleans runtime. Orleans deactivates grains
when they aren’t used for a long time, however, this never happened
in our experiments.

4.2 Distributed Analysis Challenges
Implementing a distributed system like ours is fraught with some
fundamental challenges.
Reentrancy: Since the callgraph can have cycles, a grain can start a
propagation which will in turn eventually propagate to the original
method. However, since Orleans uses turn-based concurrency this
will create a deadlock. Even without recursion it is possible for a
method grain that is currently being processed to receive another
message (i.e. a return message).
Termination: In a distributed setting, detecting when we achieve
termination is not so easy. This is in part because even if all the
local worklists are empty, we may have messages in flight or those
that have been delayed.

A naïve implementation is not going to work well because of
reentrancy issues: we can block waiting for a message that waits
for our response. In our implementation, we use orchestrators to

https://github.com/too4words/Call-Graph-Builder-DotNet
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Figure 5: The multi-queue approach, illustrated. Method
grains are circles shown in light blue. Solid and dashed ar-
rows represent standard invocations and callbacks respec-
tively. Each silo has each own dispatcher grain.

establish some degree of centralized control over the propagation
process. Grains communicate with an orchestrator exclusively, in-
stead of communicating with each other peer-to-peer. This avoids
the issue of reentrancy by construction; only the orchestrator can
send messages to grains via a single message queue. The orchestra-
tor keeps track of the outstanding tasks and can therefore detect
both termination and prevent reentrant calls from taking place.

The key disadvantage of this design is that it is possible to have a
great deal of contention for access to the orchestrator. We observed
this in practice, suggesting a different variant of this idea. We use a
collection of queues distributed across the distributed system. Each
method grain is a potential producer of effects to be processed by
other method grains. To avoid reentrancy, this information is not
sent directly to the target method grain but it is enqueued in one
of the queues in a round robin fashion. The information is then
consumed by dispatchers grains that pull the data from the queues
and deliver it to the corresponding method grains; this is illustrated
in Figure 5.

Using this mechanism we avoid both reentrancy, bottlenecks and
single points of failure. The drawback is that detecting termination
is more complex. For that, we use timers to determine when a
dispatcher becomes idle (i.e., inactive longer than a predetermined
threshold), at which point we notify the client. The analysis finishes
when the client is sure that all dispatchers are idle7. In practice, we
set the number of queues to be four times higher than the number
of worker VMs (for example, 128 queues for 32 worker VMs) and
set the termination threshold to 10 seconds.

4.3 Deployment Details
Our analysis is deployed in Azure as illustrated in Figure 7. On the
left, there is the analysis client such as an IDE or a code editor like
SublimeText. The cluster we used consists on one front-end VM
and a number of worker VMs. The client used REST requests to
communicate to the front-end VM. The job of the front-end VM is to
(1) accept and process external analysis client requests; (2) dispatch
jobs to the worker VMs and process the results; and (3) provide a
Web UI with analysis results and statistics.
Interactive deployment within an IDE: In Figure 6 we show
two screen-shots of an experimental IDE prototype that uses the

7We have a mechanism to detect when an idle dispatcher becomes active again.

(a) Visualizing callees: call site on line 20 invokes function DoTest.

(b) Visualizing callers: method Bar is called on line 23.

Figure 6: An experimental online IDE that uses analysis for
resolving references for callees and callers.

API exposed by our analysis to resolve callers/callees queries. We
should point out that the precision achieved by our analysis is
enough for the autocomplete task.

5 EVALUATION
We aim to answer the following three research questions.
RQ1: Is our analysis capable of handling arbitrary amounts of

input (i.e., more lines of code, files, projects, etc.) by increas-
ing the number of worker VMs, without running out of
memory?

RQ2: While the communication overhead can become significant,
as more worker VMs are added, does an increase in the
number of worker VMs significantly increase the overall
analysis times?

RQ3: Is the analysis query latency small enough to allow for
interactive use8?

The focus of our analysis is on being used in an interactive set-
ting. Given the low latency times we can use our analysis in-
teractively as a replacement of source code browsers such as
http://source.roslyn.io. This browser provides code search
and basic navigation facilities but lacks more advanced features
like actual callers/callees inspection/navigation that we can provide

8Generally, query latencies of 10 to 20 ms are considered to be acceptable.

http://source.roslyn.io


ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Diego Garbervetsky, Edgardo Zoppi, and Benjamin Livshits

Orleans client
Web roleAnalysis client

(IDE, visualizer, etc.)
Analysis client

(IDE, visualizer, etc.)

load and store experimental statistics

Figure 7: Azure-based deployment of our analysis. Actual
work happens within worker VMs. The analysis client in-
teracts with the cluster via a front-end VM.

with our analysis. At the same time, we are not as concerned about
the completion time for the analysis as a whole as we are about
its memory requirements on legacy VMs. Even if it takes longer to
process, our goal is to engineer an always-on system that responds
to messages sent to the cloud to service user requests, in the context
of code browsing, and other tasks listed in Section 1.2. This work
was performed in collaboration with the Roslyn team, and while
we have not performed user studies, we believe latency numbers
(most queries took under 20 ms) to be more than acceptable for
interactive use.

5.1 Experimental Setup
All the experiments presented in this paper were executed in the
cloud, on a commercially available Azure cluster. We could also
have used an AWS cluster, as our dependency on Azure is small.
The Azure cluster we used for the experiments consists on one
front-end VM and up to 64 worker role VMs. The front-end VM is
an Azure VM with 14 GB of RAM (this is an A4\ExtraLarge VM in
Azure parlance9). Each worker role is an Azure VM with 7 GB of
RAM (called A3\Large in Azure). For benchmarking purposes, we
run our analysis with configurations that include 1, 2, 4, 8, 16, 32,
and 64 worker VMs. To collect numbers for this paper, we used
a custom-written experimental controller as our analysis client
throughout this section; this setup is illustrated in Figure 7. The
controller is scripted to issue commands to analyze the next .sln
file, collect timings, etc.

We heavily instrumented our analysis to collect a set of rele-
vant metrics. We instrumented our analysis code to measure the
analysis elapsed time. We introduced wrappers around our grains
(solution, project, and method grains) to distinguish between lo-
cal messages (within the same VM) and network messages. Using
Orleans-provided statistics, we measured the maximum memory
consumption per VM. Lastly, we also have added instrumentation
to measure query response times. While these measurements are
collected at the level of an individual grain, we generally wanted
to report aggregates. To collect these, we post grain-level statistics
to a special auxiliary grain.

5.2 Benchmarks
For our inputs, we have used two categories of benchmarks, syn-
thetic benchmarks we have generated specifically to test the scal-
ability of our call graph analysis and a set of 3 real applications

9Up-to-date VM specifications are available at: https://azure.microsoft.com/
en-us/documentation/articles/virtual-workerVMs-size-specs/.

written in C# that push our analysis implementation to be as com-
plete as possible, in terms of handling tricky language features such
as delegate, lambdas, etc. and see the impact of dealing with poly-
morphic method invocations. In all cases, we start with a solution
file (.sln) which references several project files (.csproj), each of
which in turn references a number of C# source files (.cs).

Benchmark LOC Projects Classes Methods

X1,000 9,196 10 10 1,000
X10,000 92,157 50 50 10,000
X100,000 904,854 100 100 100,000
X1,000,000 9,005,368 100 100 1,000,000

Figure 8: Information about synthetic benchmarks.

Synthetic benchmarks: We designed a set of synthetic bench-
marks to test the scalability of our analysis approach. These are solu-
tion files generated to have the requisite number of methods (for the
experiments, we ranged that number between 1,000 and 1,000,000).

The Figure 8 summarizes some statistics about the synthetic
projects we have used for this evaluation. Synthetic benchmarks
were generated to have the requisite number of methods, organized
in classes and projects according to a maximum predefined num-
ber. Each method invokes between 1–11 other methods, with the
only requirement that all methods be reachable. While synthetic
programs measure the input size in a controlled way (e.g., LOCs,
methods, invocations), the real benchmarks measure the overall
complexity (e.g., polymorphism, complex program constructs).

Real-world benchmarks: We have selected several large open-
source projects from GitHub for our analysis. A summary of infor-
mation about these programs in shown in Figure 9.We tried to focus
on projects that are under active development. To illustrate, one
of our benchmarks, Azure Powershell is one of the most popular
projects written in C# on GitHub. According to the project statistics,
over a period of one month, 51 authors have pushed 280 commits
to the main branch and 369 commits to all branches. There have
been 342,796 additions and 195,366 deletions. We picked solution
ResourceManager.ForRefactoringOnly.sln from Azure Power-
shell because it is the only one that contains all the projects. Gen-
erally, discovering good root methods to serve as starting points
for the call graph analysis is not trivial. Because there is no nat-
ural Main method in several of these projects, we have decided
to use as entry points the included unit tests, event handlers, and
other public methods within the project to increase the number
of methods our analysis reaches10.

[RQ1]: Scales with input size: To answer RQ1, we measured the
memory consumption of each VM and computed the average and
maximum memory consumption across all VMs. Figure 10 shows
the average memory consumption for each benchmark during the
run, for each experimental configuration, i.e. number of worker
VMs used. As can be observed from the chart, the memory con-
sumption decreases steadily as the number of worker VMs increases.
Recall that worker VMs come equipped with 7 GB of memory, so
these memory consumption numbers are nowhere near that limit.

10Note that we do not analyze libraries provided as DLLs; our analysis implementation
works at the source level only.

https://azure.microsoft.com/en-us/documentation/articles/virtual-worker VMs-size-specs/
https://azure.microsoft.com/en-us/documentation/articles/virtual-worker VMs-size-specs/
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Azure-PW https://github.com/Azure/azure-powershell 416,833 60 2,618 23,617 0 997 1 18,747 18,759 23,663

ShareX https://github.com/ShareX/ShareX 110,038 11 827 10,177 2 0 1,122 6,257 7,377 10,411
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Figure 9: Summary of information about real-world projects from GitHub. The number of reachable methods include also
library methods invoked by the application methods. Note that some application methods might not be reachable.
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Figure 10: Average memory consumption in MB, for each
benchmark as a function of the number of worker VMs. We
see a steady decrease across the board.

Looking at Figure 10, we can see peaks of about 3.2 GB for a single
worker VM while analyzing X1,000,00011.

These experiments naturally highlight the notion of analysis
elasticity. While we run the analysis with different number of VMs
set for the sake of measurement, in reality, more machines would
be added (or removed) due to memory pressure (or lack thereof)
or to respond to how full analysis processing queues get. We can
similarly choose to increase (or decrease) the number of queues
and dispatchers involved in effect propagation. It is the job of the
Orleans runtime to redistribute the grains to update the system
with the new configuration.

RQ1: capable of handling input size?
The memory consumption per worker VMs steadily decreases as the number
of worker VMs increases.

[RQ2]: Scales with the # of worker VMs: To answer RQ2, we
proceeded to measure the total elapsed analysis time for each bench-
mark on all the configurations. Figure 11 shows the elapsed analysis
time normalized by the number of methods in the input12. Note
that the real-world benchmarks shown on the right-hand side of the
chart, despite containing fewer methods, require more time than
the synthetic benchmarks with 100,000 methods. This is simply
because of the analysis time that goes into analyzing more complex
method bodies. Real-world benchmarks allocate more objects per
method, involving more type propagation time, and perform more
virtual invocations, adding to the method resolution time, while the
synthetic benchmarks only perform static invocations and allocate

11Note also that for that benchmark, we needed to use at least 16 worker VMs to
fit all the methods into (their shared) memory. We needed at least 4 worker VMs
for X100,000.
12 Wall clock times range between less than 1 minute (64 VMs) to about 5 minutes (1
VM) in ShareX and 9 to 20 minutes in ILSpy. For other benchmarks elapsed time is
tipically less than 5 minutes for 16 VMs, except X1,000,000 that takes about 1 hour (40
minutes in 64 VMs).
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Figure 11: Elapsed analysis time in ms, as a function of the
number of worker VMs per test, normalized by the number
of reachable methods. The number of worker VMs is indi-
cated in color in the legend above the figure.

relatively few objects. As the number of worker VMs increases, we
see a consistent drop in the normalized analysis times. However,
this effect generally diminishes after 16 VMs. This has to do with the
tension between more parallel processing power of more machines
and the increase in the network overhead, as shown below.
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increase parallelism
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e

It is instructive to focus on the average number of (unprocessed)
messages in the analysis queues. If the queues are too full, adding
more machines will increase the number of queues, reducing the
size of each one. More machines will increase the parallelism be-
cause of more dispatchers to process the messages in the new
queues. As we add more resources, however, when the queues be-
come mostly empty, their associated dispatchers will be mostly idle.
So the cluster as a whole will have more computing resources than
needed. Additionally, if more machines are added, the probability of
sending a message to a grain on the samemachine as the sender will
be reduced, leading to more network overhead. So after reaching a
certain cut-off point, adding more machines is not only not helping
the analysis, but starts to degrade its performance.

RQ2: does addingmoreworkerVMs increase analysis
time?
Normalized analysis time generally decreases, as the number of worker VMs
increases, up to a point, where the law of diminishing returns kicks in.

[RQ3]: Fast enough for interactive queries: One of the goals
of our approach is to enable interactive queries submitted by an

https://github.com/Azure/azure-powershell
https://github.com/ShareX/ShareX
https://github.com/icsharpcode/ILSpy
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Figure 12: Mean and median query time (ms) for each
worker VMs and synthetic test.

analysis client such as an IDE or a sophisticated code editor. In such
a setting, responsiveness of such queries is paramount [31]. The
user is unlikely to be happy with an IDE that takes several seconds
to populate a list of auto-complete suggestions. We want to make
sure that as the query times remain tolerable (under 20 ms) even as
the size of input increases and the number of VMs goes up.

To evaluate query performance, we automatically generated se-
quences of 100 random queries, by repeating the following process.
We would first pick a random method name from the list of all
methods. Then we would (1) Request the solution grain for the
corresponding method grain; (2) Select a random invocation from
method and request the set of potential callees. In Figure 12 we
show themean andmedian query times (the latency of the two steps
above) for each benchmark and worker VM configuration. Approx-
imately 70% of queries took under 20 ms, 97% under 35 ms, 99.5%
under 60 ms. Proper system warm-up may reduce the outliers.

RQ3: is response latency small enough?
The query median response time is consistently between 10 and 20 ms.
Increasing the number of worker VMs and the input size does not negatively
affect the query response times.

6 RELATEDWORK
There exists a wealth of related work on traditional static analysis
algorithms such as call graph construction [13, 14, 37]. A compar-
ison of analysis precision is presented in Lhoták et al. [20]. As
mentioned, our implementation is inspired in VTA [36]. While we
have seen dedicated attempts to scale up important analyses such
as points-to in the literature, we are unaware of projects that aim
to bring call graph analysis to the cloud.

Many projects focus on speeding up the analysis through parallel
computation (usually on one machine). Instead, we largely focus on
handling memory pressure when analyzing large programs. There
are two orthogonal ways to do that: 1) make compositional anal-
ysis using specs/summaries (like [8, 38]), abstractions, compact
representations [40], demand-driven [34], and other techniques to
scale-up; 2) partition analysis memory among several machines.
Our analysis focuses on the latter by presenting an approach de-
signed to run on a standard cluster. The engineering challenges are
quite different, including state partitioning, decentralized control,
number/size of messages sent, termination and network latency.

Scaling Points-to analysis: Hardekopf et al. [16] show how to
scale up a points-to analysis using a staged approach. Their flow-
sensitive algorithm is based on a sparse representation of program
code created by a staged, flow-insensitive pointer analysis. They
can analyze 1.9M LOC programs in under 14 minutes. The focus (as
alleged by the authors) is in obtaining speedups, not in reducing
memory pressure. In fact, their largest benchmark required a ma-
chine with 100 GB of memory, which is generally beyond the reach
of most people. In contrast, we aim at analyzing large programs
in clusters of low-cost hardware. Yu et al. [42] propose a method
for analyzing pointers in a program level by level in terms of their
points-to levels. This strategy enhances the scalability of a context-
and flow-sensitive pointer analysis and can handle some programs
with over a million lines of C code in minutes. The approach is
neither parallel non-distributed, the focus is on speedups but some
memory is saved by the use of BDDs. Mendez-Lojo et al. [26] pro-
pose a parallel analysis algorithm for inclusion-based points-to and
show a speed up of up to 3× on an 8-core machine on code bases
with size varying from 53K LOC to 0.5M LOC. Our focus is on bring-
ing our approach to the cloud using legacy machines and going
beyond multicore, to ultimately support code bases of arbitrary size,
not being limited by the size of main memory. Voung et al. [38]
propose a technique that uses the notion of a relative lockset, which
allows functions to be summarized independent of the calling con-
text. This, in turn, allows them to perform a modular, bottom-up
analysis that is easy to parallelize. They have analyzed 4.5 million
lines of C code in 5 hours, and, after applying some filters, found
several dozen races. Knowing which methods to group together
ahead of time would help our actor-machine allocation as well.
Frameworks: Albarghouthi et al. [3] present a generic framework
to distribute top-down algorithms using a map-reduce strategy.
Their focus is in obtaining speed ups in analysis elapsed times;
they admit that a limiting scaling factor is memory consumption.
McPeak et al. [25] propose a multicore analysis that allows them to
handle millions LOC in several hours on an 8-core machine. In con-
trast, our approach focuses on a distributed analysis within a cloud
cluster on often less powerful hardware. Boa (Dyer et al. [10–12])
is a domain-specific language for mining large code repositories
like GitHub. However, while it uses a distributed backend, Boa is
not a static analysis. Xie et al. [41] propose a bottom-up analysis
that benefits from parallel processing on a multicore cluster. They
rely on a central scheduler/server, while we use several orchestra-
tors. They use method summaries while we flow the data from one
method to another. Finally, we do not rely on a centralized DB,
we use grains, which can be persisted or recomputed on-the-fly as
needed. Rodriguez et al. [32] use an actor model approach in Scala
to solve interprocedural distributive subset dataflow problems and
evaluate it on an 8-core machine. Our work shares the idea of using
actors for analysis but they focused on speed-ups, not memory
pressure. Their approach leverages on the use of one computer
to implement a global counter to monitor the size of a (virtual)
global worklist. In contrast, we run in a cloud setting and must
deal with network latency and serialization due to distribution.
Pregel [24] is a system for large-scale graph processing that uses an
asynchronous message passing model similar to actors, but execu-
tion on vertices happens in lockstep; the approach is illustrated for
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algorithms such as PageRank and shortest path computation. Gras-
pan [39], is a single-machine, disk-based parallel graph processing
system for interprocedural static analyses. Graspan offers two ma-
jor performance and scalability benefits: (1) the core computation
of the analysis is automatically parallelized and (2) out-of-core disk
support is exploited if the graph is too big to fit in memory. Our
approach focuses on a cloud-based computation, in contrast. Tri-
corder [33] is a cloud-based tool from Google, designed for scaling
program analysis. However, it is meant for simple, intraprocedural
analyses, not distributed whole-program analyses.

7 CONCLUSIONS
As modern development is increasingly moving to large online
cloud-backed repositories such as GitHub, and Visual Studio Online,
is natural towonderwhat kind of analysis can be performed on large
bodies of code. In this paper, we explore an analysis architecture in
which static analysis is executed on a distributed cluster composed
of legacy VMs available from a commercial cloud provider.

We present an static analysis approach based on the actor model
and designed for elasticity, i.e. to scale gracefully with the size of
the input. To demonstrate the potential of our analysis, we show
how a typical call graph analysis can be implemented and deployed
in Microsoft Azure. Our call graph analysis implementation is able
to handle inputs that are almost 10 million LOC in size. Our results
show that our analysis scales well in terms of memory pressure
independent of the input size, as we add more VMs. Despite using
stock hardware and incurring a non-trivial communication over-
head, our processing time for some of the benchmarks of close
to 1 million LOC can be about 5 minutes, excluding compilation
time. As the number of analysis VMs increases, we show that the
analysis time does not suffer. Lastly, we demonstrate that querying
the results can be performed with a median latency of 15 ms.

As future work we plan to investigate the performance of other
instances of our distributed framework and understand the impact
of changing the granularity of actors (e.g., from basic blocks to mod-
ules). We want to combine distributed processing with incremental
analysis: we are ultimately interested in deploying an Azure-based
distributed incremental analysis that can respond quickly to fre-
quent updates in the code repository. We plan to incorporate the
analysis into an IDE and to also perform user studies.
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